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Abstract

Prokaryotes use diverse strategies to improve fitness in the face of different environmental threats 

and stresses, including those posed by mobile genetic elements (e.g., bacteriophages and 

plasmids). To defend against these elements, many bacteria and archaea use elegant, RNA-

directed, nucleic acid– targeting adaptive restriction machineries called CRISPR–Cas (CRISPR-

associated) systems. While providing an effective defense against foreign genetic elements, these 

systems have also been observed to play critical roles in regulating bacterial physiology during 

environmental stress. Increasingly, CRISPR–Cas systems, in particular the Type II systems 

containing the Cas9 endonuclease, have been exploited for their ability to bind desired nucleic acid 

sequences, as well as direct sequence-specific cleavage of their targets. Cas9-mediated genome 

engineering is transcending biological research as a versatile and portable platform for 

manipulating genetic content in myriad systems. Here, we present a systematic overview of 

CRISPR–Cas history and biology, highlighting the revolutionary tools derived from these systems, 

which greatly expand the molecular biologists' toolkit.

Introduction and History

For decades, the function and purpose of CRISPR (clustered, regularly interspaced, short, 

palindromic repeats)–Cas (CRISPR-associated) systems remained an enigma, until a series 

of astute observations paved the way for an exploding field of research on the biology of 

these prokaryotic adaptive immune systems and the exploration of how they can be exploited 

for directed genome modification. The rapid evolution of this field has been dubbed the 

“CRISPR craze” and is widely recognized throughout the scientific community as having 

already revolutionized genetic engineering (Pennisi 2013; Barrangou 2014; Doudna and 

Charpentier 2014). Only 3 years after the first proof-of-principle experiments demonstrating 

that these systems could be reprogrammed and exploited as genome engineering tools, Cas9 
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technologies have not only been used to generate genetic knockout mutants in diverse 

organisms and model systems, but for a variety of other applications including, but not 

limited to, transcriptional repression and activation and live-cell imaging of DNA 

localization (Jinek et al. 2012; Chen et al. 2013; Cong et al. 2013; DiCarlo et al. 2013; Jiang 

et al. 2013; Mali et al. 2013; Perez-Pinera et al. 2013; Qi et al. 2013; Doudna and 

Charpentier 2014; Sampson and Weiss 2014).

It is a little-known fact that the study of CRISPR–Cas systems unknowingly began more 

than 25 years ago when an array of short, repetitive DNA sequences (∼20–40 bp in length, 

termed “repeats”) inter-spaced with nonrepetitive sequences (termed “spacers”) was 

identified following the sequencing of the gene encoding alkaline phosphatase isozyme 

conversion enzyme (iap) in the Escherichia coli genome (Ishino et al. 1987). At the time, the 

function and purpose of these sequences were unknown. However, two decades later, 

computational analyses led to the discovery that these repetitive arrays were present in 

numerous bacteria and archaea and, notably, that the spacers were identical to many 

sequences present in exogenous mobile genetic elements such as plasmids, transposons, and 

bacteriophages (Bolotin et al. 2005; Mojica et al. 2005). Further bioinformatic studies 

revealed that these arrays, termed CRISPR arrays, were often associated with a core set of 

Cas genes (Jansen et al. 2002; Haft et al. 2005). Many of the Cas genes had sequence 

similarity to endonuclease and helicase families or genes encoding other nucleic acid 

binding proteins (Jansen et al. 2002; Haft et al. 2005; Makarova et al. 2006). In conjunction 

with the fact that many spacers were identical to mobile genetic elements, these findings 

gave rise to the postulation that CRISPR–Cas systems may act as a form of RNA-directed 

interference against foreign genetic elements (Makarova et al. 2006). This hypothesis was 

solidified in 2007 by a set of foundational experiments that provided the first direct evidence 

that CRISPR sequences and the associated Cas proteins directed interference against 

bacteriophage infection (Barrangou et al. 2007). Perhaps even more interestingly, new spacer 

sequences were naturally acquired into the CRISPR array following bacteriophage infection, 

subsequently facilitating sequence-specific resistance to the offending phage, and revealing a 

mechanism of adaptive immunity in prokaryotes (Barrangou et al. 2007; Brouns et al. 2008; 

Gasiunas et al. 2012; Westra et al. 2012; Staals et al. 2013).

Over the last 8 years, the mechanism of RNA-directed interference by CRISPR–Cas systems 

has been largely uncovered (Barrangou and Marraffini 2014; Plagens et al. 2015; Rath et al. 

2015). Briefly, CRISPR-mediated interference occurs in three primary stages: (1) spacer 

acquisition, (2) crRNA transcription and maturation, and (3) target identification and 

cleavage (Fig. 1). During spacer acquisition, foreign nucleic acids are identified and 

processed into short, spacer-sized sequences that are inserted into the CRISPR array, to be 

flanked by a pair of repeat sequences (Fig. 1A–D; Heler et al. 2014). The CRISPR array is 

then transcribed and processed into mature small RNAs, called crRNAs, that each contain 

portions of the repeat sequences and a single spacer that facilitates identification of a target 

nucleic acid with significant sequence complementarity to the spacer sequence (Fig. 1E,F). 

The crRNAs complex with Cas protein(s) and, in some cases, additional RNAs to bind the 

target, resulting in target cleavage (Fig. 1G,H; Barrangou and Marraffini 2014; Plagens et al. 

2015; Rath et al. 2015).
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The field of CRISPR–Cas biology continues to rapidly expand. Numerous groups have 

elegantly revealed not only the molecular function of CRISPR–Cas systems in defense 

against foreign nucleic acids (Barrangou et al. 2007; Brouns et al. 2008; Marraffini and 

Sontheimer 2008; Hale et al. 2009; Garneau et al. 2010; Bikard et al. 2012; Gasiunas et al. 

2012) but also uncovered clues about the evolution of these systems (Makarova et al. 2011; 

Chylinski et al. 2014; Krupovic et al. 2014; Koonin and Krupovic 2015) and their functions 

in other physiological processes (Bikard and Marraffini 2013; Westra et al. 2014; Barrangou 

2015; Ratner et al. 2015). Most recently, and as is the topic of this collection, this 

foundational work has led to the discovery of how these systems, and specifically the 

CRISPR-associated endonuclease Cas9, can be engineered for myriad biotechnological 

applications.

Types of CRISPR–Cas Systems

CRISPR–Cas systems can be subdivided into three main types (Type I, II, and III) that are 

each distinguished by the presence of unique Cas proteins, encoded adjacent to the CRISPR 

array (Makarova et al. 2011). Despite their conserved function in prokaryotic adaptive 

immunity, CRISPR–Cas systems are structurally and mechanistically diverse (Makarova et 

al. 2011, 2013; Vestergaard et al. 2014). The adaptation stage of immunity is the most 

conserved between the three CRISPR–Cas subtypes, with all known systems encoding the 

Cas proteins involved in this process, Cas1 and Cas2 (Fig. 1A–C; Heler et al. 2014). These 

two metal-dependent nucleases are both necessary and sufficient for spacer acquisition, but 

dispensable for target interference (Datsenko et al. 2012; Yosef et al. 2012; Nunez et al. 

2014, 2015; Heler et al. 2015). Recently solved crystal structures of Cas1 and Cas2 indicate 

that these proteins form stable, heterodimeric complexes in vitro, and that in vivo, the 

interaction between Cas1 and Cas2 is necessary for recognizing the DNA secondary 

structure of the CRISPR repeat sequence during integration of new spacers (Nunez et al. 

2014). The catalytic activity of Cas1 is essential for spacer acquisition, whereas the 

predicted nuclease active site of Cas2 is not (Nunez et al. 2014, 2015). Evidence from 

multiple types of CRISPR–Cas systems indicates that Cas1 and Cas2 may form complexes 

with Cas proteins involved in target identification and cleavage (Datsenko et al. 2012; 

Plagens et al. 2012; Swarts et al. 2012; van der Oost et al. 2014; Heler et al. 2015; Wei et al. 

2015). Spacer acquisition may require these other Cas proteins to accurately select 

sequences in a way that prevents the CRISPR–Cas system from targeting its own 

chromosomal spacer sequences with the crRNAs transcribed from it; the details of this are 

described in sections below for the Type II systems (Barrangou et al. 2007; Datsenko et al. 

2012; Heler et al. 2015).

The differences between the distinct types of CRISPR–Cas systems become increasingly 

clear at the crRNA maturation, target identification, and interference stages of immunity. 

Notably, Type I and III systems (described in this section) use large, multimeric protein 

complexes for these activities, whereas the Type II systems (described in detail in 

subsequent sections) require a single protein for these diverse functions (van der Oost et al. 

2014). Type I systems use the endonucleases Cas6 or Cas5d to cleave the CRISPR array 

transcript within the repeat sequences flanking each spacer, resulting in a short 5′ repeat-

derived sequence and a 3′ hairpin, including a repeat-derived sequence (Carte et al. 2010; 
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Gesner et al. 2011; Jore et al. 2011; Sashital et al. 2011; Garside et al. 2012; Nam et al. 

2012; Koo et al. 2013; Reeks et al. 2013). The Cas6 protein then transports the mature 

crRNA to a complex of Cas proteins called Cascade (CRISPR-associated complex for 

antiviral defense), which functions in interference, in some cases remaining attached to the 

crRNA and becoming a part of the interference complex (Brouns et al. 2008; Carte et al. 

2008; Haurwitz et al. 2010, 2012; Hatoum-Aslan et al. 2011; Jore et al. 2011; Wang et al. 

2011; Sternberg et al. 2012; Niewoehner et al. 2014). Type I systems form an interference 

complex of four to five distinct Cas proteins, each with different stoichiometry (Brouns et al. 

2008; Jore et al. 2011; Sashital et al. 2011; Nam et al. 2012; van Duijn et al. 2012). 

Cryoelectron microscopy (CryoEM) structures of this complex indicate that six copies of 

Cas7, a protein with a ferredoxin fold that resembles an RNA Recognition Motif, form an 

RNA-binding ridge (Wiedenheft et al. 2011a, b). This ridge binds the crRNA, which is 

anchored by other Cas proteins on either end of the Cas7 multimer (Lintner et al. 2011). 

When the crRNA binds the target DNA, conformational changes result in the recruitment of 

the Cas3 endonuclease, which mediates target degradation and is the defining Cas protein of 

Type I systems (Jore et al. 2011; Wiedenheft et al. 2011b; Westra et al. 2012).

Like the Type I systems, Type III systems also use Cas6 for crRNA processing and form 

multi-protein complexes for target interference (Reeks et al. 2013). However, the Cas 

proteins in the Type III complexes are different (Spilman et al. 2013; Staals et al. 2013). 

Cas10 is a component of Type III interference complexes and is the defining Cas protein of 

these systems, although its function has not been fully elucidated (Makarova et al. 2011). 

CryoEM structures of Type III systems show that the crRNA is positioned along a backbone 

of a Cas protein complex consisting of repeat units of Csm3 (III-A) or Cmr4 (III-B), much 

like the Cas7 repeats in Type I systems (Zhang et al. 2012; Hrle et al. 2013; Rouillon et al. 

2013; Spilman et al. 2013; Staals et al. 2013, 2014). Interestingly, both Type III-A and III-B 

systems are capable of targeting DNA and RNA (Hale et al. 2009; Peng et al. 2015; Samai et 

al. 2015). In Type III-A systems, degradation of DNA requires Cas10 and cleavage occurs 

directly adjacent to the 3′ end of the bound crRNA (Samai et al. 2015). Degradation of 

RNA targets by Type III-A systems occurs in even, 6-nucleotide intervals via the Csm3 

active site, with each identical subunit in the backbone individually cleaving the target to 

collectively fragment the invading nucleic acid into consistent and precisely sized sequences 

(Staals et al. 2013; Samai et al. 2015). It is likely that the backbone repeat of Cmr4 in Type 

III-B systems has a similar mechanism of target cleavage (Staals et al. 2013; van der Oost et 

al. 2014).

Specificity of the crRNA for the target is enhanced through distinct mechanisms in different 

systems to avoid off-target effects that could occur because of binding of fully or partially 

complementary sequences, as mistargeting of the host chromosome is likely lethal to the 

bacteria. Types I and II systems improve specificity through recognition of a specific 

nucleotide sequence adjacent to the target but on the complementary strand of DNA, called 

the PAM (protospacer adjacent motif) (Bolotin et al. 2005; Deveau et al. 2008; Mojica et al. 

2009; Marraffini and Sontheimer 2010). PAM recognition facilitates Cas interference 

complex binding, DNA melting, and RNA:DNA heteroduplex formation (described in detail 

below for Type II systems) and prevents self-targeting of similar or identical sequences 

lacking a PAM (Marraffini and Sontheimer 2010). Interestingly, some Type III-A systems 

Ratner et al. Page 4

Cold Spring Harb Protoc. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may avoid cleavage of sequences incorporated into the host genome through a unique 

transcription-dependent DNA targeting mechanism that enables tolerance of lysogenic 

phages while preventing lytic phage production (Goldberg et al. 2014).

Cas9-Mediated crRNA Maturation

In contrast to Type I and III systems, Type II systems require a single Cas protein, the Cas9 

endonuclease, to mediate crRNA maturation (Deltcheva et al. 2011). The CRISPR array is 

first transcribed as a single, long transcript. Subsequently, this pre-crRNA transcript is 

processed into individual crRNAs, each specific for a different target (Fig. 1E,F). A single, 

matured, spacer-specific crRNA is then complexed with Cas9 as well as the trans-activating 

crRNA (tracrRNA), a small RNA encoded within the CRISPR–Cas locus, and unique to 

Type II systems. The tracrRNA contains multiple stem-loop structures and a sequence with 

partial complementarity to the CRISPR repeat sequence, allowing binding to the crRNA to 

facilitate maturation and complex formation with Cas9 (Deltcheva et al. 2011; Jinek et al. 

2012; Chylinski et al. 2013, 2014; Fonfara et al. 2014). The dsRNA endonuclease, RNase 

III, which is typically encoded distal from the CRISPR locus, is also required for crRNA 

maturation (Deltcheva et al. 2011). RNase III recognizes the dsRNA structure created by the 

tracrRNA:crRNA duplex and cleaves both strands of RNA within the double-stranded repeat 

region (Deltcheva et al. 2011). The tracrRNA:crRNA duplex binds tightly to Cas9 and 

undergoes additional processing through an unknown mechanism that likely involves 

additional bacterial RNases (Deltcheva et al. 2011). The dual RNA:Cas9 complex is then 

able to identify and cleave targets with sequence complementarity to the crRNA spacer (Fig. 

1G,H; Deltcheva et al. 2011; Gasiunas et al. 2012; Jinek et al. 2012; Chylinski et al. 2013; 

Fonfara et al. 2014). In some Type II systems, notably that encoded by the pathogen 

Neisseria meningitidis, maturation of the crRNAs is independent of RNase III and tracrRNA 

(Zhang et al. 2013). In this case, internal promoter sequences within each repeat sequence 

allow for transcription of individual crRNAs. These crRNAs still require tracrRNA to 

associate with Cas9, highlighting the importance of the RNA duplex for interactions with 

this protein (Zhang et al. 2013).

Target Interference by Cas9

The mechanism of target interference by Type II CRISPR–Cas systems has been well 

established and sophisticatedly elucidated, greatly informed by the solving of the crystal 

structures of Cas9 alone and bound to DNA and RNA (Deltcheva et al. 2011; Gasiunas et al. 

2012; Jinek et al. 2012, 2014; Fonfara et al. 2014; Nishimasu et al. 2014). Similar to its role 

in crRNA maturation, Cas9 is the sole Type II Cas protein involved in target surveillance and 

interference (Deltcheva et al. 2011; Jinek et al. 2012).

Cas9 has a two-lobed morphology, with a larger α-helical lobe and smaller nuclease lobe 

that together form a clam-like shape with a central channel to position the target (Fig. 2A,B; 

Jinek et al. 2014; Nishimasu et al. 2014). Cas9 first binds the crRNA:tracrRNA duplex via a 

positively charged arginine-rich motif located on the inner surface of the α-helical lobe, 

where the two lobes come together at the end of the central cavity (Jinek et al. 2014; 

Nishimasu et al. 2014). Upon RNA binding, Cas9 undergoes a first conformational change 
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to create the channel that positions the nucleic acids along the length of the protein, by 

rotating the nuclease lobe around the nucleic acid binding pocket of the α-helical lobe (Jinek 

et al. 2014; Nishimasu et al. 2014). This reorients the endonuclease domains to either side of 

the channel, into a favorable conformation for subsequent target cleavage (Figs. 1G,H and 

2B,C) (Jinek et al. 2014; Nishimasu et al. 2014).

Cas9 must then scan DNA to identify target sequences with a high degree of accuracy so as 

not to target its own chromosome. This is partially accomplished by the requirement for the 

PAM motif (typically ∼3 bp) adjacent to the targeted region on the target DNA (Figs. 1 and 

2B,C) (Gasiunas et al. 2012; Jinek et al. 2012; Fonfara et al. 2014). Cas9 associates and 

dissociates randomly along a DNA strand until encountering a PAM sequence (Sternberg et 

al. 2014). Subsequently, the PAM-interacting domain of Cas9 (located in the carboxyl 

terminus) binds tightly to the target DNA through two binding loops that interact with the 

major and minor grooves of the PAM (Jinek et al. 2014; Nishimasu et al. 2014). Cas9 then 

undergoes a second conformational change, locking the DNA target into place along the 

length of the central cavity between the two lobes (Jinek et al. 2014; Nishimasu et al. 2014). 

Interaction with the PAM leads to destabilization of adjacent double-stranded DNA and 

orients the target sequence to facilitate binding to the seed region of the crRNA (Jinek et al. 

2014; Nishimasu et al. 2014). If the target sequence has near-perfect complementarity in the 

PAM-proximal region of the spacer, melting along the DNA will occur as one strand of the 

target base pairs along the remainder of the complementary spacer, forming an RNA:DNA 

heteroduplex (Anders et al. 2014; Jinek et al. 2014; Nishimasu et al. 2014). This results in 

separation of the two DNA strands into distinct, metal ion-dependent endonuclease active 

sites (Jinek et al. 2014; Nishimasu et al. 2014).

The HNH endonuclease domain cleaves the DNA strand bound to the RNA three nucleotides 

upstream of the PAM, whereas the noncomplementary strand is also bound by the nuclease 

lobe of Cas9 but cleaved by a separate RuvC domain (Jinek et al. 2012, 2014; Nishimasu et 

al. 2014). These active sites preferentially use magnesium as a divalent ion but can tolerate 

manganese (although with a lower cleavage efficiency), whereas calcium inhibits activity 

(Jinek et al. 2012; Anders et al. 2014). Interestingly, recent in vitro kinetic studies suggest 

that Cas9 is a single turnover enzyme that remains bound to the DNA target following 

cleavage, and the fate of Cas9 that has completed cleavage is currently unknown (Sternberg 

et al. 2014).

Spacer Acquisition in Cas9-Dependent CRISPR–Cas Systems

Adaptation, through the acquisition of new spacers into the CRISPR array, is the least 

understood stage of canonical CRISPR–Cas function. In Type II-A systems, all components 

of the CRISPR–Cas system form a complex that is required for adaptation (Cas1, Cas2, 

Cas9, Csn2, and tracrRNA) (Heler et al. 2015; Wei et al. 2015). A similar mechanism is 

likely used by other Type II subtypes that contain these components, excluding Csn2, which 

is absent from Type II-C and is replaced by Cas4 in Type II-B subtypes (Chylinski et al. 

2013, 2014). Both Csn2 and Cas4 resemble RecB-like nucleases and may therefore play a 

similar role in adaptation, although their precise functions are not known (van der Oost et al. 

2014). Csn2 and Cas4, as well as Cas1 and Cas2, are all dispensable for crRNA processing 
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and target interference in Type II CRISPR–Cas systems (Deltcheva et al. 2011; Jinek et al. 

2012). Interestingly, the Cas1 proteins present in Type II CRISPR–Cas systems cluster 

phylogenetically with those of Type I systems (Chylinski et al. 2014). This may indicate that 

the distinct functions of Type II systems arose via recombination events with Cas9 and other 

types of CRISPR–Cas systems, such as the Type I system (Chylinski et al. 2014).

Upon invasion by a foreign nucleic acid, CRISPR–Cas systems must select spacer sequences 

in a manner that prevents autoimmunity (Stern et al. 2010; Heler et al. 2015). Type II 

systems accomplish this by requiring a specific PAM sequence adjacent to the one that will 

ultimately be integrated as the spacer (i.e., the protospacer) (Díez-Villaseñor et al. 2013; 

Nunez et al. 2014; Heler et al. 2015). In Type II-A systems, Cas9, in complex with Cas1, 

Cas2, and Csn1 and bound to tracrRNA, identifies PAMs on the invading DNA to facilitate 

spacer selection using the PAM-interacting domain (Jinek et al. 2014; Nishimasu et al. 2014; 

Heler et al. 2015; Wei et al. 2015). There may be additional requirements for the selection of 

the spacer sequence, as there is an enrichment for certain spacer sequences that cannot be 

accounted for by the sequence of the PAM alone; however, these requirements have yet to be 

identified (Heler et al. 2014).

Mutations in the PAM-interacting domain of Cas9 do not prevent spacer acquisition but 

instead result in incorporation of spacers that are not adjacent to a PAM in the target (Heler 

et al. 2015). The endonuclease activity of Cas9 is dispensable for acquisition, suggesting that 

the role for Cas9 is to select spacers by binding to the PAM and protospacer sequence, 

whereas Cas1 (whose nonspecific nuclease activity is required for adaptation) of the 

associated Cas1–Cas2–Csn1 complex cleaves the adjacent sequence, yielding a precisely 

selected spacer sequence (Heler et al. 2015). There are many unknowns in the mechanism of 

adaptation, but a general model has been developed (Fig. 1A–D; Heler et al. 2014, 2015; 

Nunez et al. 2014, 2015). Cas1–Cas2 together interact with the secondary structures of the 

CRISPR repeat sequences within the array, preferentially near the leader sequence, which 

also acts as a promoter (Nunez et al. 2014, 2015). A repeat sequence within the 

chromosomal array is then nicked at the 3′ end, allowing for ligation of the free hydroxyl to 

the spacer fragment (Nunez et al. 2015). The spacer is inserted into the array, flanked by the 

single complementary strands of the first CRISPR repeat (Nunez et al. 2015). These are 

repaired into double-stranded repeats by DNA polymerase, resulting in a new repeat-flanked 

spacer in the chromosome, to be transcribed and processed into a crRNA that can protect 

against future invasion by complementary, PAM-flanked sequences (Nunez et al. 2015).

Alternative Functions of Cas9 in Bacterial Physiology

Although CRISPR–Cas systems have been very well established to promote prokaryotic 

defense against foreign nucleic acids, there is increasing evidence that these systems, and 

Cas9 in particular, play important roles in bacterial physiology (Bikard and Marraffini 2013; 

Westra et al. 2014; Barrangou 2015; Ratner et al. 2015). These additional Cas9-mediated 

functions include endogenous gene regulation and facilitate the strengthening of envelope 

structure, resistance to antibiotics and ultimately allow certain bacterial pathogens to 

dampen host immune activation (Bikard and Marraffini 2013; Westra et al. 2014; Barrangou 

2015; Ratner et al. 2015).
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Some alternative Cas9 functions have been revealed through the study of the intracellular 

pathogen Francisella novicida (Sampson and Weiss 2013). Using a regulatory axis 

comprised of Cas9, tracrRNA, and a unique small RNA encoded adjacent to the CRISPR 

array, the scaRNA (small, CRISPR–Cas associated RNA), F. novicida represses the 

production of a specific endogenous bacterial lipoprotein (BLP) (Sampson et al. 2013; 

Chylinski et al. 2014). Repression of this BLP by the F. novicida Cas9 regulatory axis allows 

the bacterial cell to strengthen the integrity of its envelope, decreasing envelope permeability 

and promoting resistance to certain antibiotics (Sampson et al. 2014). Furthermore, because 

BLPs are recognized by the host innate immune receptor, Toll-like receptor 2 (TLR2), 

repression of BLP allows F. novicida to dampen the activation of TLR2 and prevent 

inflammatory immune signaling, ultimately promoting survival and replication in the host 

(Jones et al. 2012; Sampson et al. 2013, 2014). The precise mechanism of Cas9-mediated 

gene repression in this system is unknown. In the absence of Cas9, tracrRNA, or the 

scaRNA, levels of the BLP transcript are drastically increased, as these components together 

act to decrease the stability of the mRNA (Sampson et al. 2013). Interestingly, the catalytic 

residues within Cas9 that are involved in DNA cleavage are not essential to maintain low 

levels of BLP transcript, most likely suggesting that stability is altered by currently 

unidentified accessory RNases (Heidrich and Vogel 2013; Sampson et al. 2013).

F. novicida is not the only bacterium known to use Cas9 in a fashion distinct from defense 

against invading nucleic acid. Cas9 encoded by Neisseria meningitidis is necessary for 

attachment, entry, and intracellular survival of the bacteria in human epithelial cells 

(Sampson et al. 2013). Campylobacter jejuni also uses Cas9 for attachment and invasion of 

epithelial cells (Louwen et al. 2013). In the absence of Cas9, C. jejuni displays increased 

envelope permeability, antibiotic susceptibility, and surface antibody binding, which may 

suggest that Cas9 acts to regulate components of the C. jejuni envelope (Louwen et al. 2013; 

Sampson et al. 2014). Numerous other examples of alternative CRISPR–Cas activities that 

do not use Cas9 have been observed and are growing in number. Some notable examples 

include biofilm formation in Pseudomonas aeruginosa (Zegans et al. 2009; Cady and 

O'Toole 2011), fruiting body formation in Myxococcus xanthus (Viswanathan et al. 2007; 

Wallace et al. 2014), intra-amoeba survival in Legionella pneumophila (Gunderson and 

Cianciotto 2013; Gunderson et al. 2015), colonization of nematodes by Xenorhabdus 
nematophila (Veesenmeyer et al. 2014), and many others. However, as these systems do not 

use Cas9, they are beyond the scope of this discussion and have been reviewed extensively 

elsewhere (Bikard and Marraffini 2013; Westra et al. 2014; Barrangou 2015; Ratner et al. 

2015). Nonetheless, such examples of moonlighting functions of CRISPR–Cas systems in 

bacterial physiology may provide the framework to understand the evolution of these 

systems as well as how they may be further used and exploited for biotechnological 

purposes.

Use of Cas9 for Genome Engineering

The insights into the mechanism of Cas9 function led to the hypothesis that the spacer 

sequence of the crRNA targeting region could be reprogrammed such that this machinery 

would mediate target cleavage at sites of interest. This activity was subsequently shown, in 

vitro, only 5 years after the first functional description of these systems (Barrangou et al. 
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2007; Jinek et al. 2012). It was clearly shown that synthetic crRNAs could be produced that 

were capable of hybridizing to DNA sequences of interest, allowing Streptococcus pyogenes 
Cas9 to catalyze a double-stranded DNA break at that site (Jinek et al. 2012). Although still 

exceedingly less complex than synthetically engineering other site-specific nucleases, such 

as zinc finger nucleases or TALENs (transcription-like effector nucleases), the expression of 

two separate small RNAs nonetheless represented added difficulty. The requirement for 

tracrRNA was relieved and the system simplified even further with the engineering of a 

synthetic, double-stranded targeting RNA (a guide RNA, or gRNA) (Jinek et al. 2012). (See 

Introduction: Guide RNAs: A Glimpse at the Sequences that Drive CRISPR–Cas 
Systems [Briner and Barrangou 2016].) The gRNA retains the double-stranded sequence 

and structural elements of the tracrRNA:crRNA duplex that are necessary for interaction 

with Cas9 but is transcribed as a single RNA (Jinek et al. 2012; Chylinski et al. 2013). This 

chimeric RNA therefore does not require RNase III processing. The spacer sequence, which 

directs Cas9 targeting, can easily be modified, facilitating reprogramming against diverse 

targets (Deltcheva et al. 2011; Jinek et al. 2012). The generation of the gRNA significantly 

increased the ease of engineering new targeting sequences and, together with the elucidation 

of Cas9 activity, helped pave the way for a revolutionary, highly cost-effective, and efficient 

method of genome engineering.

These developments have now sprung the so-called CRISPR craze of Cas9-mediated 

genome engineering in many systems, both prokaryotic and eukaryotic. Cas9 from multiple 

bacterial species (including S. pyogenes, S. thermophilus, Staphylococcus aureus, N. 
meningitidis, and Treponema denticola) have been successfully used to edit the genomes of 

cells from diverse organisms including the human (discussed in Protocol: Protocol for 
Genome Editing in Human Pluripotent Stem Cells [Smith et al. 2016]), bacteria, yeast 

(discussed in Protocol: CRISPR–Cas9 Genome Engineering in Saccharomyces cerevisiae 
Cells [Ryan et al. 2016]), nematode, plants, fruitfly (discussed in Introduction: Cas9-
Mediated Genome Engineering in Drosophila melanogaster [Housden and Perrimon 

2016]), zebrafish (discussed in Protocol: Optimized CRISPR–Cas9 System for Genome 
Editing in Zebrafish [Vejnar et al. 2016]), salamander, frog, and rodent (discussed in 

Protocol: Protocol for the Generation of Genetically Modified Mice Using the CRISPR–
Cas9 Genome-Editing System [Henao-Mejia et al. 2016]), with target modification 

efficiencies reported up to 80% (Jinek et al. 2012, 2013; Belhaj et al. 2013; Cho et al. 2013; 

Cong et al. 2013; DiCarlo et al. 2013; Gratz et al. 2013; Hou et al. 2013; Hwang et al. 2013; 

Jiang et al. 2013; Lo et al. 2013; Nakayama et al. 2013; Nekrasov et al. 2013; Ren et al. 

2013; Wang et al. 2013; Yu et al. 2013; Flowers et al. 2014; Ryan and Cate 2014; Ran et al. 

2015). Such rapid utilization across these varied systems serves to highlight the ease of use 

and portability of Cas9-based technologies.

In the simplest use of Cas9 genome editing, random mutations are introduced at the site of 

cleavage. Because Cas9 catalyzes a double-strand break at its cleavage site adjacent to the 

PAM, cells can undergo nonhomologous end joining (NHEJ) to repair the cleaved DNA 

(Cong et al. 2013; DiCarlo et al. 2013; Jinek et al. 2013). With varying efficacies based on 

the cellular repair machineries, NHEJ can restore the cleaved sequence to the original, but it 

can also result in the loss or addition of nucleotides (Cong et al. 2013; DiCarlo et al. 2013; 
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Jinek et al. 2013). The majority of mutations that are generated following Cas9-mediated 

cleavage are either single-base insertions or deletions or nine-base deletions (Cradick et al. 

2013). Such NHEJ-mediated repair can therefore result in early stop codons or other 

frameshift mutations that can cause loss of function of the targeted gene. Ultimately, this can 

provide a quick and simple method to generate null mutations in genes of interest.

An alternative repair pathway to NHEJ can also occur within the cell, termed homology-

directed repair (HDR). HDR transpires when DNA containing sequence homology with the 

region surrounding the cleavage site is used as a template for homologous recombination. 

By introducing linear or circular DNA containing a sequence of interest (such as a selectable 

or nonselectable marker) flanked by regions homologous to those adjacent to the Cas9 

cleavage site, integration of this donor construct can occur by HDR. This allows Cas9 to 

effectively generate desired insertions of DNA into sequence-specific sites of interest (Cong 

et al. 2013; DiCarlo et al. 2013). (The detection of HDR events is discussed in Introduction: 

Detecting Single-Nucleotide Substitutions Induced by Genome Editing [Miyaoka et al. 

2016].) Furthermore, to increase the likelihood of HDR and limit the chances of NHEJ, a 

partially mutated Cas9 protein can be used. Engineered point mutations in either one of the 

two Cas9 endonuclease domains (RuvC or HNH) results in a protein that is capable of only 

cleaving a single strand of its DNA target (Jinek et al. 2012; Cong et al. 2013; DiCarlo et al. 

2013). This decreases the frequency of NHEJ repair, and in the presence of a donor 

construct, these single-strand nicks are preferentially repaired by HDR. To further increase 

the rate of HDR, NHEJ can be inhibited (Chu et al. 2015; Maruyama et al. 2015). This has 

successfully been accomplished by either transcriptionally silencing the NHEJ machinery or 

through a small molecule inhibitor of the NHEJ polymerase (DNA Pol IV). By blocking 

NHEJ, HDR repair rates have been increased by four- to 19-fold, facilitating much more 

efficient integration of desired sequences into targeted sites (Chu et al. 2015; Maruyama et 

al. 2015).

The ability to easily target Cas9 to diverse sequences within the same cell allows large-scale 

screens of genetic knockouts to be performed (a process described in Introduction: Large-
Scale Single Guide RNA Library Construction and Use for Genetic Screens [Wang et al. 

2016]), a method previously relegated to the world of prokaryotic genetics. Recent studies 

have used pools of more than 70,000 gRNAs in both positive and negative screens (Bell et 

al. 2014; Shalem et al. 2014; Wang et al. 2014; Yin et al. 2014; Zhou et al. 2014). Cas9-

based screens allow genes to be fully inactivated, not only repressed as occurs during 

canonical RNA interference-based screens. This loss-of-function method may allow the 

identification of genes that maintain functional roles even when repressed to very low 

expression levels through RNAi methods. Cas9 deletion screens, therefore, will potentially 

uncover previously masked functions of critical genes.

Although the ability of Cas9 to catalyze sequence-specific DNA breaks has revolutionized 

the introduction of insertions and deletions into DNA, a number of other technologies have 

been invented that exploit Cas9's ability to bind and strongly associate with desired DNA 

sequences. Cas9 can be engineered to be completely catalytically inactive through alanine 

substitutions in both the RuvC and HNH domains, resulting in a variant termed nuclease-

deficient Cas9, or dCas9 (Jinek et al. 2012; Jiang et al. 2013; Qi et al. 2013). dCas9 binds 
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targeted DNA sequences as specified by the gRNA, but rather than cleaving the target, 

instead prevents transcription by blocking the binding or elongation of RNA polymerase 

(Jiang et al. 2013; Qi et al. 2013); see Protocol: CRISPR Technology for Genome 
Activation and Repression in Mammalian Cells (Du and Qi 2016). The level of 

transcriptional inhibition, or CRISPR interference (CRISPRi), can be tuned with different 

strategies to titrate the expression level of a transcript. Simultaneously targeting dCas9 to 

multiple sites in the same gene increases repression, as does increasing the proximity of 

dCas9 binding to the promoter (Jiang et al. 2013; Qi et al. 2013). Whereas repression can 

occur via dCas9 alone, this protein can be tethered to other proteins and molecules to 

facilitate increased efficacy or perform other actions at discrete sites in a genome. Fusion of 

dCas9 to the KRAB or SID4X repressors in eukaryotic systems can increase targeted 

repression (Jiang et al. 2013; Konermann et al. 2013; Perez-Pinera et al. 2013; Qi et al. 

2013). Similar to transcriptional repression, dCas9 can also be fused to a transcriptional 

activator, such as VP64 in eukaryotic systems or the omega subunit of RNA polymerase in 

prokaryotic systems (Cheng et al. 2013; Jiang et al. 2013; Mali et al. 2013; Perez-Pinera et 

al. 2013; Qi et al. 2013). When guided to a promoter, these dCas9-activator fusions can 

efficiently recruit RNA polymerase and activate transcription of genes of interest.

The programmable DNA binding activity of dCas9 has been exploited even further. For 

instance, a fluorescently tagged dCas9 can be guided to specific genetic loci in live cells, 

allowing the spatiotemporal dynamics of specific sequences within the chromatin to be 

observed (Chen et al. 2013). Additionally, dCas9 has also been used to purify specific DNA 

sequences from live cells, in an enhanced form of chromatin immunoprecipitation (enCHiP) 

(Fujita and Fujii 2015). Cas9-mediated enCHiP has allowed the identification of previously 

unknown proteins that associate with specific DNA sequences in mammalian chromosomes 

(Fujita and Fujii 2013, 2014). Furthermore, fusion of dCas9 to the human acetyltransferase 

p300 allows the site-specific acetylation of histone H3 on lysine 27 (Hilton et al. 2015). This 

facilitates the activation of genes at enhancer sites distal to the targeted gene and also allows 

heritable epigenetic changes to be passed into a population (Hilton et al. 2015). Future Cas9 

technologies may use other effector proteins to drive sequence-specific epigenetic 

modifications, such as DNA and/or histone methylation.

One of the most powerful attributes of the Cas9 system is the ability to be multiplexed to 

distinct targets within the same cell (Cheng et al. 2013; Cong et al. 2013; Ryan and Cate 

2014); see Introduction: Characterization of Cas9–Guide RNA Orthologs (Braff et al. 

2016). In fact, the simultaneous utilization of Cas9 orthologs from distinct species has 

allowed the generation of mutations, as well as transcriptional activation and repression to 

occur within the same cell (Esvelt et al. 2013). Such methods lay the foundation for the 

engineering of incredibly detailed genetic circuits or to intricately probe genetic networks. In 

theory, the multiplexing capacity of Cas9 could be used to generate double-and triple-mutant 

libraries, facilitating the study of redundant systems and more easily exploring complex 

genetic circuits.

Despite the unprecedented utility and efficiency of the Cas9-dependent tools that have been 

created, one nontrivial challenge facing these technologies is off-target effects. Outside of a 

seed sequence located up to 12 bases proximal to the PAM, Cas9 can tolerate a range of 
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mismatches, allowing it to bind and cleave sequences that are not the exact target (Jinek et 

al. 2012; Cradick et al. 2013; Pattanayak et al. 2013; Lin et al. 2014b). To prevent nontarget 

interactions, a number of databases have been developed (such as E-Crisp, Off-Spotter, and 

CRISPRdirect) that allow researchers to design gRNAs with optimized targeting and few to 

no off-target possibilities (Heigwer et al. 2014; Naito et al. 2015; Pliatsika and Rigoutsos 

2015). However, such optimized Cas9 targeting can still be somewhat imperfect.

One method to drastically reduce off-target effects involves guiding Cas9 nickases to offset 

sites on the opposite strands, flanking the target, and creating a pair of ssDNA nicks (Mali et 

al. 2013; Ran et al. 2013). In conjunction with a donor construct containing homology with 

the sequences adjacent to those that have been cleaved, this method allows very high 

specificity of gene replacement at the site flanked by the offset nicks. Off-target effects are 

significantly limited, as the likelihood of nicked pairs at sites other than the desired sequence 

is extremely low (Mali et al. 2013; Ran et al. 2013). Furthermore, ssDNA nicks are easily 

repaired by the cell with almost undetectable levels of mutation. Thus, even if a single Cas9 

nickase cleaves an off target site, the likelihood of a detrimental effect is limited. Cas9 has 

also been recently engineered to contain a photocaged lysine, rendering the protein 

catalytically inactive until stimulated with UV light, allowing it to become active and 

capable of cleaving DNA targets (Hemphill et al. 2015). Although still in infancy, such 

approaches will allow a fine-tuning of the regulation of Cas9 catalytic activity. These 

methods to overcome the potential off-target and other undesired effects of Cas9 will greatly 

increase the utility and acceptance of this technology, not only in a research setting, but also 

in therapeutic and clinical applications.

Cas9 technologies hold promise for use in mediating gene therapy, although numerous 

significant hurdles and questions remain. Although delivery (described in Protocol: Adeno-
Associated Virus– Mediated Delivery of CRISPR–Cas Systems for Genome 
Engineering in Mammalian Cells [Gaj and Schaffer 2016]) is a major roadblock, 

supplying Cas9, specific gRNAs, and repair constructs may allow the treatment of defined 

genetic disorders, by introducing or removing genetic information. Although large in size, 

Cas9 may be packaged into adeno- and lentiviral vectors (Shalem et al. 2014; Ran et al. 

2015), but recent studies have also showed that Cas9 in complex with gRNAs can enter cells 

directly using lipid-based transfection techniques, fusion to cell-penetrating peptides, and 

nanoparticle delivery (Ramakrishna et al. 2014; McNeer et al. 2015; Zuris et al. 2015). 

Furthermore, the study of various Cas9 variants from different species may reveal a 

minimally sized Cas9 enzyme that retains programmable DNA binding and cleavage 

function (Jinek et al. 2014; Ran et al. 2015). An additional layer of security in delivery has 

also been successfully used whereby Cas9 is controlled by cell-specific promoters, allowing 

its activity to be limited to very specific cell types, such as neurons (Swiech et al. 2015). 

Further approaches using optogenetics have allowed the regulation of dCas9-mediated gene 

activation only in response to light stimulation (Konermann et al. 2013; Hemphill et al. 

2015; Nihongaki et al. 2015).

The pathway toward translational uses of Cas9-directed repair has been exemplified recently 

in a number of systems. For instance, a common mutation in the CFTR locus that 

contributes to cystic fibrosis was repaired by Cas9 in primary human intestinal cells 
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(Schwank et al. 2013). Similarly, in human induced pluripotent stem cells (iPSCs) derived 

from a myeloproliferative neoplasm, Cas9 was used to repair the oncogenic mutation (Smith 

et al. 2015), and mutations in the crygc gene that is responsible for cataracts were repaired in 

mouse zygotes and spermatogonial stem cells (Ren et al. 2013; Wu et al. 2015). 

Additionally, HIV proviruses have been removed from infected cells using Cas9-directed 

cleavage, and hepatitis B and hepatitis C viruses have been targeted, perhaps providing a 

framework for future antiviral therapeutics (Hu et al. 2014; Lin et al. 2014a; Kennedy et al. 

2015; Liao et al. 2015; Price et al. 2015). Such repair has not been limited to tissue culture 

studies ex vivo. In mice (Ren et al. 2013), the Fah mutation, which induces tyrosinemia, and 

recently a cftr mutation in a mouse model of cystic fibrosis were both successfully corrected 

through Cas9-mediated repair (Yin et al. 2014; McNeer et al. 2015). Although proofs of 

concept, these groundbreaking studies highlight the therapeutic potential of emerging Cas9 

technologies in treating genetic disorders.

Future Directions

From their first identification as unique genetic elements to the elucidation of their function 

as a prokaryotic adaptive immune system, CRISPR–Cas systems have been one of the most 

exciting fields in biology. Being able to exploit these systems for biotechnological purposes 

serves to emphasize the power that the study of seemingly “basic” biological mechanisms 

can have on extremely far reaching biotechnological and clinical applications. Already, 

Cas9-mediated engineering has been used throughout multiple fields and is rapidly changing 

the face of eukaryotic genetics.

Continued study of natural CRISPR–Cas systems, both in their canonical function as 

restriction systems against nucleic acids and in their alternative roles in bacterial physiology, 

will provide further insights into how these systems can be exploited for bioengineering 

applications. As more Cas9 orthologs are analyzed, these variants will allow researchers to 

further understand the structural and sequence requirements that determine PAM specificity, 

crRNA sequence requirements, and DNA binding stringency, allowing Cas9 proteins to be 

engineered for increased specificity and efficacy. Likewise, there remain large, unanswered 

questions in the field of CRISPR–Cas biology that will certainly lead to the development of 

even more tools for molecular biology. Already, other Cas proteins have been predicted to 

have diverse and conserved functions. For example, Cas1 and Cas2 have been proposed to 

act as a toxin–antitoxin system, becoming autotoxic in the presence of bacteriophage 

infections that are not successfully controlled by the canonical nucleic acid targeting activity 

of CRISPR–Cas systems, perhaps by cleaving endogenous mRNA (Makarova et al. 2012). 

This second line of defense would prevent bacteriophages from replicating and subsequently 

infecting other cells but, if true, could also form the platform for a Cas2-based RNA 

interference technology. At the same time, continued study of how Cas1 and Cas2 act to 

integrate new sequences into the bacterial chromosome may further allow the generation of 

new technologies that are more efficient at mediating site-directed DNA integration. Thus, 

as we learn more about the functions of diverse Cas proteins, we will greatly expand our 

ability to develop novel molecular tools for interrogation of pressing biological mysteries.
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The power of proteins that can be programmed to recognize specific sequences of DNA is 

enormous. Given the ease and accessibility of the Cas9 system, incredible progress has been 

made in developing this system for a plethora of purposes that have already left their mark 

on numerous disciplines from molecular biology to translational medicine. Cas9 has shaped 

and will continue to shape modern biology now and for the foreseeable future. The 

technological possibilities of Cas9 are seemingly endless and limited only by our creativity 

and imagination.
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Figure 1. 
The three stages of adaptive immunity by Type II-C CRISPR–Cas systems. (A–D) Spacer 

acquisition: (A) foreign DNA (dark purple) enters the cell, and (B) Cas1, Cas2, and Cas9 in 

complex with tracrRNA (blue) select a spacer sequence on the target through Cas9-mediated 

identification of a protospacer adjacent motif (PAM; dark purple rectangle on the foreign 

DNA). The PAM adjacent sequence is processed into a spacer-sized fragment. (C) The Cas 

protein complex attached to the spacer identifies the CRISPR array and creates staggered 

single-stranded breaks on each side on a repeat. (D) The new spacer sequence is inserted 

into the array and the single-stranded repeats on either side of the new spacer are repaired by 

DNA polymerase I. (E,F) crRNA transcription and maturation: (E) the CRISPR array and 

tracrRNA are transcribed. (F) Cas9 binds tracrRNA and the CRISPR transcript, which is 

then cleaved into mature, spacer-specific crRNAs by RNase III. The mature dual 

crRNA:tracrRNA remains bound to Cas9 as a hetero-duplex. (G,H) Target identification and 

cleavage: (G) Upon re-infection with foreign DNA, the spacer on the crRNA of the 

Cas9:RNA heteroduplex binds to its complementary sequence on the foreign nucleic acid. 

(H) Cas9 adopts a conformationally active state and cleaves both DNA strands in the target, 

protecting the cell.
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Figure 2. 
Schematic of Cas9:gRNA interactions. (A) Upon association with a chimeric gRNA, 

consisting of an ssRNA targeting region similar to the crRNA (red) and a dsRNA structure 

similar to that created by the crRNA:tracrRNA complex (yellow), the α-helical lobe (blue) 

and the nuclease lobe (pink) of Cas9 are opened into a conformation that reveals a channel 

for DNA targets to bind. (B) When DNA containing a PAM sequence is identified by Cas9, 

and the targeting sequence of the gRNA (red) has significant sequence complementarity to 

the immediately adjacent DNA sequence, the DNA is melted and unwound, generating a 

DNA:RNA hybrid. (C) Cas9 then undergoes a conformational change, clamping its nuclease 

lobe across the targeted DNA and positioning each strand into the HNH and RuvC active 

sites of the nuclease lobe. The HNH and RuvC endonuclease domains then cleave the 

complementary and noncomplementary strands, respectively, resulting in a double-strand 

break in the target immediately adjacent to the PAM.
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